Safety Components

OMRON Corporation

Contents of this document are subject to change without notice.

E-9 means \(^{10^{-9}}\).

Safety Door Switch

<table>
<thead>
<tr>
<th>Product</th>
<th>Model</th>
<th>Condition / Function</th>
<th>SIL</th>
<th>PFH(_0)</th>
<th>PL</th>
<th>Category</th>
<th>MTTF(d/Year)</th>
<th>DCavg (%)</th>
<th>B10T</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-STOP Switch</td>
<td>A315E Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>E-STOP Switch</td>
<td>A316E Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>E-STOP Switch</td>
<td>A321E Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact has a structure that conforms to IEC 60947-5-1 (Direct opening mechanism) only when the key is turned to left.</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>A221L-2PSL</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact has a structure that conforms to IEC 60947-5-1 (Direct opening mechanism) only when the key is turned to left.</td>
</tr>
<tr>
<td>Key Switch</td>
<td>A231J-201</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact has a structure that conforms to IEC 60947-5-1 (Direct opening mechanism) only when the key is turned to left.</td>
</tr>
<tr>
<td>Key Switch</td>
<td>A233N-2010</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact has a structure that conforms to IEC 60947-5-1 (Direct opening mechanism) only when the key is turned to left.</td>
</tr>
<tr>
<td>Enabling Switch</td>
<td>A4E</td>
<td>Enable output</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Enabling Grp Switch</td>
<td>A4EG</td>
<td>Built-in enabling switch (A4E)</td>
<td>Enable Output</td>
<td>Enable Output</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4B-[GJ]1N</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4B-[GJ]15N</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4B-[GJ]70N</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4B-[GJ]71N</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4B Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4B Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D47-I2</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D47-I20</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G-[P]2</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G-[P]20</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Limit Switch</td>
<td>D4G2 Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
<tr>
<td>Safety Door Switch</td>
<td>D4G Series</td>
<td>Normally Closed contact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Normally closed contact conforms to IEC 60947-5-1 (Direct Opening Mechanism).</td>
</tr>
</tbody>
</table>

Reliability Data for Safety of Machinery

8-Aug-2019

> Reliability Data for Safety of Machinery

Safety Components

Reliability Data for Safety of Machinery

8-Aug-2019

> Reliability Data for Safety of Machinery
Reliability Data for Safety of Machinery

OMRON Corporation

Safety Components

Contents of this document are subject to change without notice.

8-Aug-2019

E-9 means 10^9.

Products Model Condition / Function SIL PFHD PL Category MTTFD(Year) DCavg (%) B10Y Note

Safety Relay STG-AE AC-1 240V 85A - - - - - - -

Safety Relay STGA AC-1 240V 6A DC-1 240V 6A - - - - - - -

Power Relay ST2 Main Contact: AC-1 440V 40A Auxiliary Contact: AC-1 440V 1A - - - - - - -

Frequency Inverter MX Series EL1G02-Y1 Stop function in conformity to Stop Category 0 SL3 2.4E-10 e 3 100 82 -

PLC Function General purpose function EL1G02 series STD via hardwired signal SL3 1.2E-8 e 4 100 99 -

Non-contact Door Switch D4QA Safety Output SL2 2.4E-10 d 3 100 82 -

Non-contact Door Switch D40Z Safety Output SL3 1.5E-10 e 4 2500 98 -

Safety Network Controller DST1-2256SL-1 - SL2 2.4E-10 e 4 - - -

Safety Network Controller DST1-2056SL-1 - SL2 2.4E-10 e 4 - - -

Single Beam Safety sensor ES2S-T81A Used in combination with OMRON's dedicated controller - - c 2 100 90 -

Safety Light Curtain FS3G-2RA [5] - SL1 1.1E-8 c 2 100 98 -

Safety Light Curtain FS3G-4RA [5] - SL3 1.1E-8 e 4 223 98 -

Safety Light Curtain FS3G-2RE [5] - SL1 9.1E-9 c 2 100 98 -

Safety Light Curtain FS3G-4RE [5] - SL3 9.1E-9 e 4 266 98 -

Safety Light Curtain FS3G-4RF [5] - SL1 1.1E-8 e 4 223 98 -

Safety Light Curtain FS3G-2RF [5] - SL3 1.1E-8 e 4 223 98 -

Safety Light Curtain FS3G-25RE [5] Type 2. Detection capability is 14, 25, 45, or 85 mm dia. SL1 7.7E-9 c 2 100 98 -

Safety Light Curtain FS3G-45RE [5] Type 4. Detection capability is 14, 25, 45, or 85 mm dia. SL3 7.7E-9 e 4 210 98 -

Safety Light Curtain FS3G-2025P14 to A0461N14 - SL3 1.7E-8 e 4 - - -

Safety Light Curtain FS3G-2055P14 to A0461N14 - SL3 2.5E-8 e 4 - - -

Safety Light Curtain FS3G-2065P14 to A0461N14 - SL3 3.3E-8 e 4 - - -

Safety Light Curtain FS3G-1425P14 to A1271XN4 - SL3 4.0E-8 e 4 - - -

Safety Light Curtain FS3G-1915P14 - SL3 4.5E-8 e 4 - - -

Safety Light Curtain FS3G-2025N14 to A2459N20 - SL3 2.0E-8 e 4 - - -

Safety Light Curtain FS3G-2055N14 to A2459N20 - SL3 3.5E-8 e 4 - - -

Safety Light Curtain FS3G-2105N14 to A2459N20 - SL3 1.7E-8 e 4 - - -

Safety Light Curtain FS3G-2025PD to A0461N14 - SL3 2.5E-8 e 4 - - -

Safety Light Curtain FS3G-2055PD to A0461N14 - SL3 3.3E-8 e 4 - - -

Safety Light Curtain FS3G-2065PD to A0461N14 - SL3 4.0E-8 e 4 - - -

Safety Light Curtain FS3G-1925PD to A2459N20 - SL3 2.0E-8 e 4 - - -

Safety Light Curtain FS3G-2055PD to A2459N20 - SL3 3.5E-8 e 4 - - -

Safety Light Curtain FS3G-2065PD to A2459N20 - SL3 4.0E-8 e 4 - - -

Safety Light Curtain FS3G-2105PD to A2459N20 - SL3 4.5E-8 e 4 - - -

Safety Light Curtain FS3G-2025PD to A1271XN4 - SL3 2.0E-8 e 4 - - -

Safety Light Curtain FS3G-2055PD to A1271XN4 - SL3 3.5E-8 e 4 - - -

Safety Light Curtain FS3G-2105PD to A1271XN4 - SL3 1.7E-8 e 4 - - -

The data is applicable for the models with a protective hight from 983 to 1271mm.

The data is applicable for the models with a protective hight from 1487 to 1631mm.

The data is applicable for the models with a protective hight from 2405 to 2495mm.

The data is applicable for the models with a protective hight from 245 to 755mm.

The data is applicable for the models with a protective hight from 551 to 911mm.

The data is applicable for the models with a protective hight from 983 to 1271mm.

The data is applicable for the models with a protective hight from 1487 to 1631mm.

The data is applicable for the models with a protective hight from 2405 to 2495mm.

The data is applicable for the models with a protective hight from 245 to 755mm.

The data is applicable for the models with a protective hight from 983 to 1271mm.

The data is applicable for the models with a protective hight from 1487 to 1631mm.

The data is applicable for the models with a protective hight from 2405 to 2495mm.

The data is applicable for the models with a protective hight from 245 to 755mm.

The data is applicable for the models with a protective hight from 983 to 1271mm.
As a subsystem, it conforms to IEC 62061 SIL3.
SIL3
Release delayed safety output
1.8E-8

As a subsystem, it conforms to IEC61508 SIL3. The PL of the whole system is determined upon it being combined with a non-contact switch (D40A or D40B).

As a subsystem, it conforms to ISO13849-1 PLd.
As a subsystem, it conforms to ISO13849-1 PLd.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.

As a subsystem, it conforms to ISO13849-1 PLe.
As a subsystem, it conforms to ISO13849-1 PLe.
Safety Components

OMRON Corporation

8-Aug-2019

Contents of this document are subject to change without notice.

E-9 means \(10^{-9}\).

<table>
<thead>
<tr>
<th>Products</th>
<th>Model</th>
<th>Condition / Function</th>
<th>SIL</th>
<th>PFH(_D)</th>
<th>PL</th>
<th>Category</th>
<th>MTTF(_D)(Year)</th>
<th>DCavg (%)</th>
<th>B10(_D)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Network Controller</td>
<td>NE1A-SCPU02</td>
<td>SIL3</td>
<td>e</td>
<td>6.5E-10</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>99</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SID800</td>
<td>SIL3</td>
<td>e</td>
<td>4.3E-10</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>98</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SIH400</td>
<td>SIL3</td>
<td>e</td>
<td>3.1E-10</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>98</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL3300</td>
<td>SIL3</td>
<td>e</td>
<td>3.0E-10</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>96</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL3500</td>
<td>SIL3</td>
<td>e</td>
<td>5.0E-11</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>96</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL3510</td>
<td>SIL3</td>
<td>e</td>
<td>5.0E-11</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>97</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL7000</td>
<td>SIL3</td>
<td>e</td>
<td>5.0E-11</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>97</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL2400</td>
<td>SIL3</td>
<td>e</td>
<td>5.3E-10</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>96</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL2500</td>
<td>SIL3</td>
<td>e</td>
<td>3.4E-10</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>96</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL5500</td>
<td>SIL3</td>
<td>e</td>
<td>5.0E-11</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>97</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL5700</td>
<td>SIL3</td>
<td>e</td>
<td>5.0E-11</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>97</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL5510</td>
<td>SIL3</td>
<td>e</td>
<td>5.0E-11</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>97</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>NX-series Safety Control Unit</td>
<td>NX-SL5710</td>
<td>SIL3</td>
<td>e</td>
<td>5.0E-11</td>
<td>e</td>
<td>4</td>
<td>2500</td>
<td>97</td>
<td></td>
<td>As a subsystem, it conforms to IEC61508 SIL3. The value of PFHD is not including the PFHD of FSoE connection. Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>Safety Laser Scanner</td>
<td>NS-200</td>
<td>SIL2</td>
<td>d</td>
<td>6.0E-8</td>
<td>d</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>AC Servo System 1S-series</td>
<td>RMD-12D0-ECT</td>
<td>SIL2</td>
<td>d</td>
<td>1.4E-9</td>
<td>d</td>
<td>3</td>
<td>100</td>
<td>99</td>
<td></td>
<td>Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>AC Servo System 1S-series</td>
<td>RMD-12D6-ECT</td>
<td>SIL2</td>
<td>d</td>
<td>1.7E-11</td>
<td>d</td>
<td>3</td>
<td>100</td>
<td>86</td>
<td></td>
<td>Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>AC Servo Drive GC Series</td>
<td>RMD-XT-KON</td>
<td>SIL2</td>
<td>d</td>
<td>2.8E-9</td>
<td>d</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Users must add PFHD of a FSoE connection (1.0E-9) to the system PFHD for calculating the PL of the system according to IEC 61784-3:2016.</td>
</tr>
<tr>
<td>Safety Laser Scanner</td>
<td>NS-200</td>
<td>SIL2</td>
<td>d</td>
<td>6.0E-8</td>
<td>d</td>
<td>3</td>
<td>100</td>
<td>99</td>
<td></td>
<td>When combined with a connected safety edge, it conforms to both ISO 13849-1 PLd and ISO 13856-2. When combined with a connected safety mat, it conforms to both ISO 13849-1 PLd and ISO 13856-1.</td>
</tr>
<tr>
<td>Safety Laser Scanner</td>
<td>NS-200</td>
<td>SIL2</td>
<td>d</td>
<td>6.0E-8</td>
<td>d</td>
<td>3</td>
<td>100</td>
<td>99</td>
<td></td>
<td>When combined with a connected safety edge, it conforms to both ISO 13849-1 PLd and ISO 13856-2. When combined with a connected safety mat, it conforms to both ISO 13849-1 PLd and ISO 13856-1.</td>
</tr>
<tr>
<td>Safety Laser Scanner</td>
<td>NS-200</td>
<td>SIL2</td>
<td>d</td>
<td>6.0E-8</td>
<td>d</td>
<td>3</td>
<td>100</td>
<td>99</td>
<td></td>
<td>When combined with a connected safety edge, it conforms to both ISO 13849-1 PLd and ISO 13856-2. When combined with a connected safety mat, it conforms to both ISO 13849-1 PLd and ISO 13856-1.</td>
</tr>
<tr>
<td>Safety Laser Scanner</td>
<td>NS-200</td>
<td>SIL2</td>
<td>d</td>
<td>6.0E-8</td>
<td>d</td>
<td>3</td>
<td>100</td>
<td>99</td>
<td></td>
<td>When combined with a connected safety edge, it conforms to both ISO 13849-1 PLd and ISO 13856-2. When combined with a connected safety mat, it conforms to both ISO 13849-1 PLd and ISO 13856-1.</td>
</tr>
</tbody>
</table>