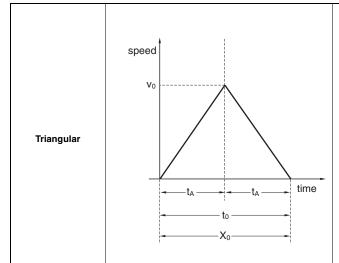

Servo Motor Selection Flow Chart

Explanation	References
Determine the size, mass, coefficient of	
friction, and external forces of all the moving	
part of the Servo Motor the rotation of which	
affects.	
Determine the operating pattern (relationship)	Operation Pattern Formula
between time and speed) of each part that	Operation rattern ronnala
must be controlled.	
Convert the operating pattern of each	
controlled element into the motor shaft	
operating pattern.	
•The elements of the machine can be	Inertia Formulas
separated so that inertia can be calculated	mortia i omidiae
for each part that moves as the Servo Motor	
rotates.	
Calculate the inertia applied to each element	
to calculate the total load inertia of the motor	
shaft conversion value.	
Calculation of Friction Torque	Load Torque Formulas
Calculates the frictional force for each	
element, where necessary, and converts it to	
friction torque for a motor shaft.	
Calculation of External Torque	
Calculates the external force for each	
element, where necessary, and converts it to	
external torque of a motor shaft.	
Calculates the total load torque for the motor	
shaft conversion value.	
Select a motor temporarily based upon the	
motor shaft converted load inertia, friction	
torque, external torque and r.p.m of a motor.	
Calculate the Acceleration/Deceleration	Acceleration/Deceleration
Torque from the Load Inertia or Operating	Torque Formulas
Pattern.	
Calculate the necessary torque for each part	Calculation of Maximum
of the Operating Pattern from the Friction	Momentary Torque, Effective
Torque, External Torque and Acceleration/	Torque
Deceleration Torque.	
Confirm that the maximum value for the	
Torque for each operating part (Maximum	
Momentary Torque) is less than the	
Maximum Momentary Torque of the motor.	
Calculate the Effective Torque from the	
Torque for each Operating part, and confirm	
that it is less than the Rated Torque for the	
motor.	

END Selection


Explanation	References
Calculate Regenerative Energy from the Torque of all the moving parts.	 Please see the user manual of each product for the details on calculation of the regenerative energy.
Check if the the number of encoder pulses meets the system specified resolution.	Accuracy of Positioning
Check if the calculation meets the specifications of the temporarily selected motor. If not, change the temporarily selected motor and re-calculate it.	The following table

Specialized Check Items	Check Items
Load Inertia	Load Inertia ≤ Motor Rotor Inertia x Applicable Inertia Ratio
Effective Torque	Effective Torque < Motor Rated Torque
Effective Torque	Please allow a margin of about 20%. ★
	Maximum Momentary Torque < Motor Maximum
	Momentary Torque
Maximum	 Please allow a margin of about 20%. ★
Momentary Torque	• For the motor Maximum Momentary Torque, use the
	value that is combined with a driver and the one of the
	motor itself.
	$\label{eq:maximum Rotation Speed} \mbox{Maximum Rotation Speed of a}$
	motor
Maximum Rotation	•Try to get as close to the motor's rated rotations as
Speed	possible. It will increase the operating efficiency of a
	motor.
	For the formula, please see "Straight-line Speed and
	Motor Rotation Speed" on Page 11.
	Regenerative Energy ≤ Regenerative Energy Absorption of
Regenerative	a motor
Energy	When the Regenerative Energy is large, connect a
3,	Regenerative Energy Absorption Resistance to increase
	the Absorption capacity of the driver.
Encoder Resolution	Ensure that the Encoder Resolution meets the system
	specifications.
Characteristics of a	Check if the Pulse Frequency does not exceed the
Positioner	Maximum Response Frequency or Maximum Command
	Frequency of a Positioner.
Operating	Ensure that values of the ambient operating temperature/
Conditions	humidity, operating atmosphere, shock and vibrations
	meet the product specifications.

^{*} When handling vertical loads and a load affected by the external torque, allow for about 30% of capacity.

Formulas

■Formulas for Operating Patterns

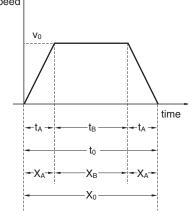
Travel Distance

$$v_0 = \frac{X_0}{t_0}$$

 $X_0 = v_0 \cdot t_A$

Maximum Speed $V_0 = \frac{X_0}{t_A}$ X_0 : Distance Moved in t_0 Time (mm)

v₀: Maximum Speed (mm/s)


Acceleration/Deceleration Time $t_A = \frac{X_0}{v_0}$ t_0 : Positioning Time (s)

$$t_A = \frac{X_0}{X_0}$$

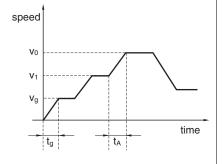
 t_A : Acceleration/ Deceleration Time (s)

speed

Trapezoid

$$\text{Maximum Speed} \qquad v_0 = \frac{X_0}{t_0 - t_{\text{A}}}$$

Acceleration/Deceleration Time $t_A = t_0 - \frac{X_0}{v_0}$


Constant-velocity travel time $t_B=t_0-2\cdot t_A=2\,\frac{2\cdot X_0}{v_0}-t_0=\frac{X_0}{v_0}-t_v$

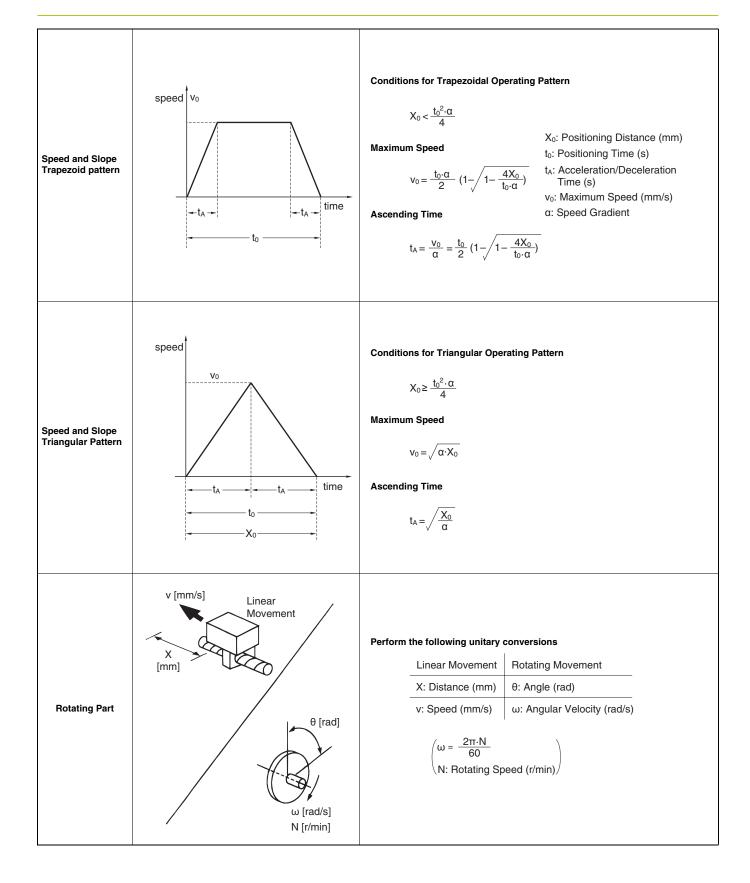
Total Travel Distance $X_0 = v_0 (t_0 - t_A)$

Acceleration/Deceleration Travel Distance $\chi_A = \frac{v_0 \cdot t_A}{2} = \frac{v_0 \cdot t_0 - X_0}{2}$

Constant-velocity travel distance $X_B = v_0 \cdot t_B = 2 \cdot X_0 - v_0 \cdot t_0$

Speed and Slope When Ascending

Speed Gradient $\alpha = \frac{v_g}{t_q}$


Ascending Time $t_A = \frac{v_0 - v_1}{\alpha}$

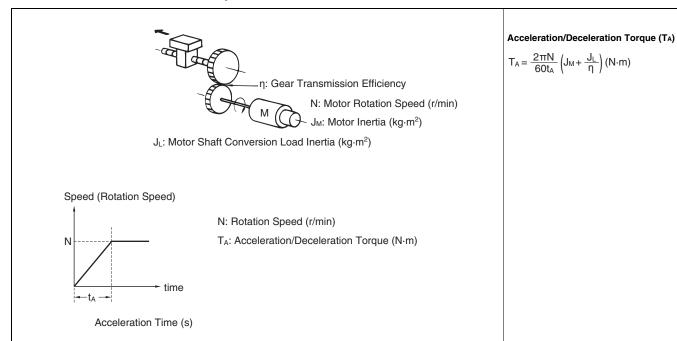
Ascending Time (ta) including distance moved

$$X_A = \frac{1}{2} \alpha \cdot t_A^2 + v_1 \cdot t_A$$

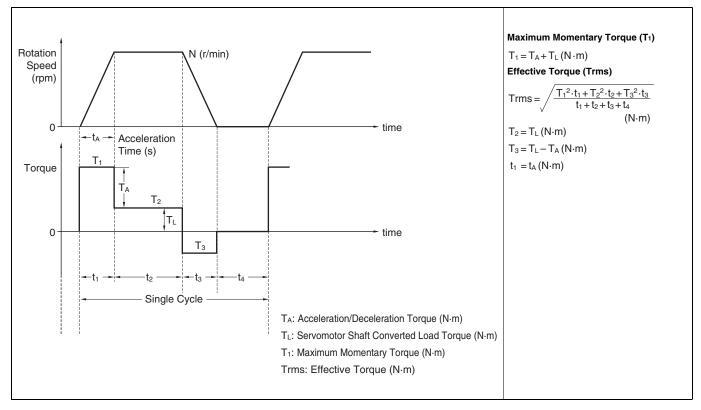
$$=\frac{1}{2}\frac{(v_0-v_1)^2}{\alpha}+v_1\cdot t_A$$

Speed after Ascending $v_0 = v_1 + \alpha \! \cdot \! t_A$

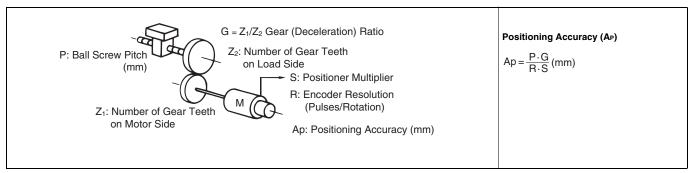
■Inertia Formulas

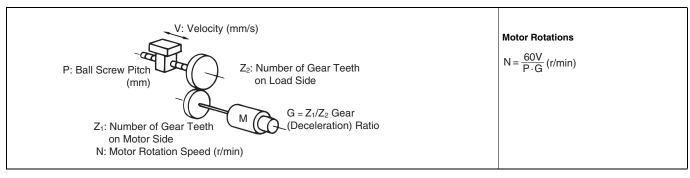

Cylindrical Inertia	D ₂ : Cylinder Inner Diameter (mm) D ₁ : Cylinder Outer Diameter (mm) M: Cylinder Mass (kg) J _W : Cylinder Inertia (kg·m²)	$J_W = \frac{M(D_1^2 + D_2^2)}{8} \times 10^{-6} (kg \cdot m^2)$
Eccentric Disc Inertia (Cylinder which rotates off the center axis)	M: Cylinder Mass (kg) M: Cylinder Mass (kg) M: Cylinder Mass (kg) J _W : Inertia (kg·m²) re: Rotational Radius (mm)	$J_W = J_C + M \cdot re^2 \times 10^{-6} \text{ (kg} \cdot \text{m}^2\text{)}$
Inertia of Rotating Square Cylinder	M: Square Cylinder Mass (kg) b: Height (mm) J _W : Inertia (kg·m²) a: Width (mm)	$J_{W} = \frac{M(a^{2} + b^{2})}{12} \times 10^{-6} (kg \cdot m^{2})$
Inertia of Linear Movement	M: Load Mass (kg) J _B : Ball Screw Inertia (kg·m²) P: Ball Screw Pitch (mm) J _W : Inertia (kg·m²)	$J_W = M \left(\frac{P}{2\pi}\right)^2 \times 10^{-6} + J_B (kg \cdot m^2)$
Inertia of Lifting Object by Pulley	D: Diameter (mm) M ₁ : Mass of Cylinder (kg) J ₁ : Cylinder Inertia (kg·m²) J ₂ : Inertia due to the Object (kg·m²) M ₂ : Mass of Object (kg) J _W : Inertia (kg·m²)	$J_W = J_1 + J_2$ $= \left(\frac{M_1 \cdot D^2}{8} + \frac{M_2 \cdot D^2}{4}\right) \times 10^{-6} \text{ (kg} \cdot \text{m}^2\text{)}$

Inertia of Rack and Pinion Movement	M: Mass (kg) D: Pinion Diameter (mm)	$J_{W} = \frac{M \cdot D^{2}}{4} \times 10^{-6} \text{ (kg} \cdot \text{m}^{2}\text{)}$
Inertia of Suspended Counterbalance	J _W : Inertia (kg·m²) M ₁ : Mass (kg) M ₂ : Mass (kg)	$J_W = \frac{D^2 (M_1 + M_2)}{4} \times 10^{-6} (kg \cdot m^2)$
Inertia when Carrying Object via Conveyor Belt	$M_3: \text{Mass of Object (kg)} \qquad D_1: \text{Cylinder 1 Diameter (mm)} \\ M_4: \text{Mass of Belt (kg)} \qquad J_W: \text{Inertia (kg} \cdot m^2) \\ J_W: \text{Inertia (kg} \cdot m^2) \\ J_1: \text{Cylinder 1 Inertia (kg} \cdot m^2) \\ J_2: \text{Inertia due to Cylinder 2 (kg} \cdot m^2) \\ J_3: \text{Inertia due to the Object (kg} \cdot m^2) \\ J_4: \text{Inertia due to the Belt (kg} \cdot m^2)$	$\begin{split} J_W &= J_1 + J_2 + J_3 + J_4 \\ &= \left(\frac{M_1 \cdot D_1^2}{8} + \frac{M_2 \cdot D_2^2}{8} \cdot \frac{D_1^2}{D_2^2} + \right. \\ &\left. \frac{M_3 \cdot D_1^2}{4} + \frac{M_4 \cdot D_1^2}{4} \right) \times 10^{-6} \\ &\left. (kg \cdot m^2) \right. \end{split}$
Inertia where Work is Placed between Rollers	J _W : System Inertia (kg·m²) J ₁ : Roller 1 Inertia (kg·m²) J ₂ : Roller 2 Inertia (kg·m²) D ₁ : Roller 1 Diameter (mm) D ₂ : Roller 2 Diameter (mm) M: Equivalent Mass of Work (kg)	$J_W = J_1 + \left(\frac{D_1}{D_2}\right)^2 J_2 + \frac{M \cdot D_1^2}{4} \times 10^{-6} $ $(kg \cdot m^2)$
Inertia of a Load Value Converted to Motor Shaft	$Load \\ Gears \\ Z_2: \ Number \ of \ Gear \ Teeth \\ on \ Load \ Side \\ J_2: \ Gear \ Inertia \ on \ Load \ Side \\ (kg\cdot m^2) \\ Motor \\ Z_1: \ Number \ of \ Gear \ Teeth \\ on \ Motor \ Side \\ J_1: \ Gear \ Inertia \ on \ Motor \ Side \\ (kg\cdot m^2) \\ J_L: \ Motor \ Shaft \ Conversion \ Load \ Inertia \\ Gear \ Ratio \ G = Z_1/Z_2 \\ (kg\cdot m^2)$	$J_L = J_1 + G^2 (J_2 + J_W) (kg \cdot m^2)$

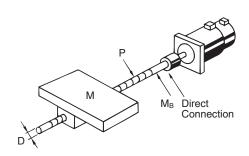

■Load Torque Formulas

Torque against external force	F: External Force (N) T _w : Torque due to External Forces (N·m)	$T_W = \frac{F \cdot P}{2\pi} \times 10^{-3} (\text{N} \cdot \text{m})$
Torque against frictional force	M: Load Mass (kg) µ: Ball Screw Friction Coefficient P: Ball Screw Pitch (mm) Tw: Frictional Forces Torque (N·m)	$T_W = \mu Mg \cdot \frac{P}{2\pi} \times 10^{-3} (\text{N} \cdot \text{m})$
Torque when external force is applied to a rotating object	F: External Force (N) Tw: Torque due to External Forces (N·m)	$T_W = F \cdot \frac{D}{2} \times 10^{-3} \text{ (N·m)}$
Torque of an object on the conveyer belt to which the external force is applied	D: Diameter (mm) F: External Force (N) Tw: Torque due to External Forces (N·m)	$T_W = F \cdot \frac{D}{2} \times 10^{-3} (\text{N} \cdot \text{m})$
Torque of an object to which the external force is applied by Rack and Pinion	F: External Force (N) D: Diameter (mm) T _w : Torque due to External Forces (N·m)	$T_W = F \cdot \frac{D}{2} \times 10^{-3} (\text{N} \cdot \text{m})$
Torque when work is lifted at an angle.	T _W : External Torque (N·m) Pinion G: Acceleration due to Gravity (9.8m/s²) Plumb Line M: Mass (kg)	$T_{W} = Mg \cdot \cos\theta \cdot \frac{D}{2} \times 10^{-3} (N \cdot m)$
Torque of a Load Value Converted to Motor Shaft	$Z_2: \ Number \ of \ Gear \ Teeth \\ on \ Load \ Side \\ \eta: \ Gear \ Transmission \ Efficiency$ $Z_1: \ Number \ of \ Gear \ Teeth \\ on \ Motor \ Side \\ Gear \ (Deceleration) \ Ratio \ G = Z_1/Z_2$ $T_L: \ Motor \ Shaft \ Conversion \\ Load \ Torque \ (N\cdot m)$	$T_L = T_W \cdot \frac{G}{\eta} (N \cdot m)$

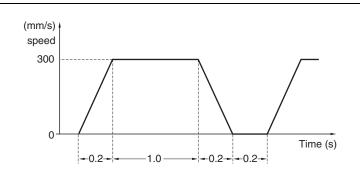

■Acceleration/Deceleration Torque Formula


■Calculation of Maximum Momentary Torque, Effective Torque

■Positioning Accuracy


■Straight Line Speed and Motor Rotation Speed

Sample Calculations


1 Machinery Selection

- Load Mass M = 5 (kg)
- Ball Screw Pitch P = 10 (mm)
- Ball Screw Diameter D = 20 (mm)
- Ball Screw Mass MB = 3 (kg)
- Ball Screw Friction Coefficient μ = 0.1
- \bullet Since there is no decelerator, G = 1, η = 1

2 Determining Operating Pattern

- One Speed Change
- Velocity for a Load Travel V = 300 (mm/s)
- Strokes L = 360 (mm)
- Stroke Travel Time tS = 1.4 (s)
- Acceleration/Deceleration Time tA = 0.2 (s)
- Positioning Accuracy AP = 0.01 (mm)

3 Calculation of Motor Shaft Conversion Load Inertia

Ball screw Inertia J _B	$J_B = \frac{M_B D^2}{8} \times 10^{-6}$	$J_{B} = \frac{3 \times 20^{2}}{8} \times 10^{-6} = 1.5 \times 10^{-4} (\text{kg} \cdot \text{m}^{2})$
Load Inertia Jw	$J_W = M \left(\frac{P}{2\pi}\right)^2 \times 10^{-6} + J_B$	$J_W = 5 \times \left(\frac{10}{2 \times 3.14}\right)^2 \times 10^{-6} + 1.5 \times 10^{-4} = 1.63 \times 10^{-4} \text{ (kg·m}^2\text{)}$
Motor Shaft Conversion Load Inertia J∟	$J_{L} = G^{2} \times (J_{W} + J_{2}) + J_{1}$	$J_L = J_W = 1.63 \times 10^{-4} (kg \cdot m^2)$

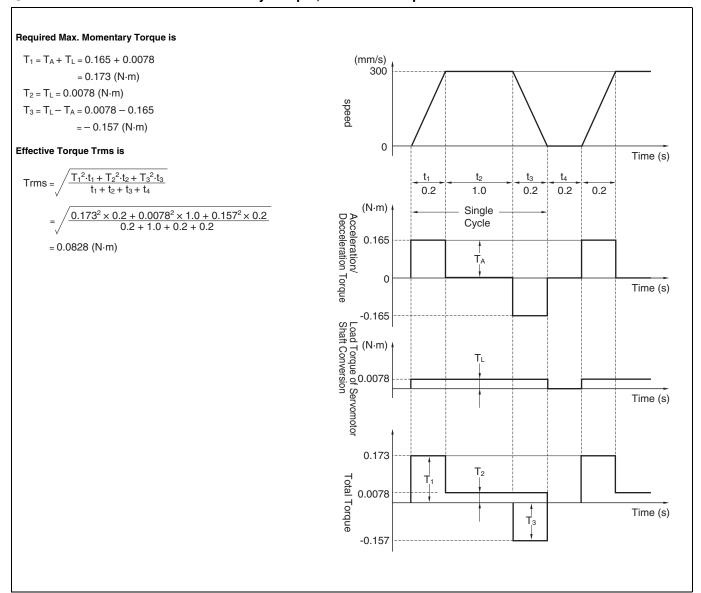
4 Load Torque Calculation

Torque against Friction Torque Tw	$T_W = \mu Mg \frac{P}{2\pi} \times 10^{-3}$	$T_W = 0.1 \times 5 \times 9.8 \times \frac{10}{2 \times 3.14} \times 10^{-3} = 7.8 \times 10^{-3} \text{ (N·m)}$
Motor Shaft Conversion Load Torque T _L	$T_L = \frac{G}{\eta} \cdot T_W$	$T_L = T_W = 7.8 \times 10^{-3} (\text{N} \cdot \text{m})$

5 Calculation of Rotation Speed

Rotations N	$N = \frac{60V}{P \cdot G}$	$N = \frac{60 \times 300}{10 \times 1} = 1800 \text{ (r/min)}$
-------------	-----------------------------	--

6 Motor Temporary Selection [In case OMNUC U Series Servo Motor is temporarily selected]


The Rotor/Inertia of the selected servo motor is more than 1/30* of a load	$JM \geq \frac{J_L}{30}$	$\begin{split} \frac{J_L}{30} &= \frac{1.63 \times 10^{-4}}{30} = 5.43 \times 10^{-6} \; (\text{kg} \cdot \text{m}^2) \\ \text{Temporarily selected Model R88M-U20030 } (J_\text{M} = 1.23 \times 10^{-5}). \end{split}$
80% of the Rated Torque of the selected servo motor is more than the load torque of the servomotor shaft conversion value	$T_M \times 0.8 > T_L$	Rated Torque for R88M – U20030 Model from TM = 0.637 (N·m) $T_M = 0.637 \; (N\cdot m) \times 0.8 > T_L = 7.8 \times 10^{-3} \; (N\cdot m)$

 $[\]ensuremath{\bigstar}$ Note that this value changes according to the Series.

7 Calculation of Acceleration/Deceleration Torque

Deceleration Torque T _A $\begin{vmatrix} 1A = \frac{1}{60t_A} \end{vmatrix} \begin{pmatrix} 0M + \frac{1}{\eta} \end{vmatrix}$ $\begin{vmatrix} 1A = \frac{1}{60 \times 0.2} \times 1.23 \times 10^{-3} + \frac{1}{1.0} \end{vmatrix} = 0.165 \text{ (N·m)}$

8 Calculation of Maximum Momentary Torque, Effective Torque

9 Result of Examination

Load Inertia	[Load Inertia $J_L = 1.63 \times 10^{-4} \text{ (kg·m}^2)$] \leq [Motor Rotor Inertia $J_M = 1.23 \times 10^{-5}$] \times [Applied Inertia = 30]	
Effective Torque	[Effective Torque Trms = 0.0828 (N·m)] < [Servomotor Rated Torque 0.637 (N·m) × 0.8]	
Maximum Momentary Torque	[Maximum Momentary Torque T ₁ = 0.173 N·m < [Servomotor Maximum Momentary Torque 1.91 (N·m) × 0.8]	
Maximum Rotation Speed	Maximum Rotations Required N = 1800 (r/min)] ≤ [Servomotor Rated Rotation Speed 3000 (r/min)]	
	The encoder resolution when the positioner multiplication factor is set to 1 is	
Encoder Resolution	$R = \frac{P \cdot G}{Ap \cdot S} = \frac{10 \times 1}{0.01 \times 1} = 1000 \text{ (Pulses/Rotations)}$	Conditions Satisfied
	The encoder specification of U Series 2048 (pulses/rotation) should be set 1000 with the Encoder Dividing Rate Setting.	

Note. This example omits calculations for the regenerative energy, operating conditions, or positioner characteristics.